Del

Lab safety in general

The site contains basic rules to prevent accicendts in the laboratories and increase general safety.

·Consuming food, drinks and others alike along with smoking is prohibited

·Keep clean and organised also around common equipment

·Avoid contaminating books, calculators, pencils etc.

·Hands shall be washed before entering and leaving the laboratory

·Keep your lab coat in your locker after ended laboratory work 

In case of a accident

If you need immediate help (e.g., in the case of an acute, life-threatening injury) call the Emergency Services (Tel: 1-1-2). You can call this number 24 hours a day, every day.

If you have been injured, always call the Emergency Telephone Number 1818 before you proceed to the Emergency Room to meet with someone from the Emergency Department.

Kalundborg Medical Clinic takes care of the emergency treatment of injuries. Here you can treat minor injuries such as cuts, sores, minor burns and sprains. The nurse who will answer the Emergency Telephone Number above will evaluate where you can receive the appropriate treatment.

The Medical Clinic in Kalundborg is open weekdays between 14:00 – 22:00, and weekends between 10:00 -20:00. The Medical Clinic is staffed with specially trained nurses. It is located within the Kalundborg Health and Emergency Center, Nørre Allé 31, 4400 Kalundborg.

Outside opening hours at Kalundborg Medical Clinic you will be referred to Holbæk Hospital, Emergency department / Emergency room, Entrance A, Smedelundsgade 60, 4300 Holbæk. Here it is open 24 hours and the emergency room is staffed with doctors and specially trained nurses.

If you require medical treatment, a fellow student or University employee can accompany you to the hospital. Give as much comprehensive and complete information as possible to the doctors. If the accident is caused by a reagent /chemical - bring instructions on how to deal with it (i.e., the appropriate Material Safety Data Sheet).

If the injury is less serious, you can use a taxi (e.g., Kalundborg Taxi 59 51 51 51) to drive you to the medical clinic. If you pay yourself then get a receipt.

Remember that any accidents and safety incidents are to be reported to the Occupational Safety Group at UC Absalon, Center for Engineering. 

 

Intervention for all accidents

Contain and minimise the damage. Initiate first aid. Call for help.

The staff are instructed and trained in the safety regulations, but everybody who is able to should help the best they can in any given situation.

If necessary, call an ambulance (Tel: 112). The address of the school building is:

Professionshøjskolen Absalon

 Campus Kalundborg 4, 4400 Kalundborg.

Send a person to meet the ambulance.

 

Corrosion in eyes:

1)         Rinse IMMEDIATELY with cold tap water - with eyelids pulled wide. Remove any contact lenses / rinse away. There are also special showers that can be used for eye washing. These are located at the washbasin in the laboratory.

2)         Eyewash bottles are located in the rack on the wall in the laboratory.

3)         The person should be sat or laid down, the rinsing continued with an eyewash bottle – for at least another 15 minutes.

4)         Additional eyewash bottles can be collected if necessary

5)         Take the injured person to the nearest medical clinic’s emergency room if required. Continue rinse during transport. Continued and copious rinsing is the best course of action - it is more important to rinse continuously than to get to the hospital very quickly. Be sure to bring the name of the chemical and if possible the chemical safety data sheet.

6)         After the damage is contained be sure to order new eyewash bottles

Bases give more serious burning than acids, therefore rinse for a longer period of time when the injury results from a basic chemical.

Corrosion on skin:

Corrosive chemicals on the skin should be rinsed off IMEDIATELY with  temperate cold tap water. Rinse for a long time, use the tap or emergency shower depending on the extent. Basic chemicals results in deeper burns than acids therefore should the period of the wash be longer.

Bases burn deeper than acids, therefore you must rinse for a longer time. 

Burns:

The burned skin should be cooled with water. Keep cooling in water until the wound no longer hurts when the burned skin is in the open air – this may take some hours. In case of blisters in the affected area, seek medical advice.

Fire:

 Put out a fire in the hair or on clothes using the emergency shower located at the sink at the entrance to the laboratoryin the desk in the middle of the room B03. In some cases, the use of a fire blanket, towel or a coat may be faster. Remember always to use water after a fire blanket to ensure the extinguish and cool the area.  

Smaller Fires -: Depending on the situation – are put out with a wet towel or a. Alternatively, a fire blanket. or cCarbon dioxide

(CO2)/ABC powder fire extinguisher may be used but never against a person.

Carbon dioxide fire extinguishers (also called CO2 extinguishers) can be found in every laboratory.

and ABC powder fire extinguishers are located at KalA0.01, .02 and .05. These must not be used against humans.

ABC powder shutter fire extinguisher is used for extinguishing ABC fires as well as electrical installations and appliances::

A fires (wood, paper and textiles)
B fires (flammable liquids)
C fires (gases)

Carbon dioxide fire extinguishers are best used for electrical installations and  appliances.

 

Do not use water against electrical installations and appliances.

Uncontrollable Fire

Evacuate the area. Make sure that everyone is out of the room. Close the door (if possible, turn off any gas supplies and close all the windows).

Call the emergency services (Tel: 112). Make sure there is someone to direct the fire department when they arrive, and explain the location of the fire.

Get everyone to leave the building. Follow the evacuation signs in the hallway.

Dishwash

Opvask: Brugte glasvarer forurenet med organiske, lugtende og evt. giftige kemikalier SKAL grovskylles i stinkskab til affaldsdunk med vand eller ethanol evt. acetone, alt efter hvad der renser bedst, for at undgå dampe fra farlige stoffer og lugtgener. Derefter vaskes med sæbe og vandværksvand. Til sidst skylles med ionbyttet vand. Specielt glas udstyr skal samles til en speciel vaskemaskine

Personal Hygiene

Personal hygiene is extremely important to persons working in a laboratory. Contamination of food, beverages, or smoking materials is a potential route to exposure to toxic chemicals or biological agents through ingestion. Thus, laboratory personnel shall not prepare, store, or consume food or beverages; pipette by mouth; smoke; apply lip balm or cosmetics; or handle contact lenses in the work area. This familiar elementary safety rule shall be followed by everyone working in or visiting a laboratory.

Hand washing and sanitizing

Hand washing is a primary safeguard against inadvertent exposure to toxic chemicals or biological agents. Always wash your hands before leaving the laboratory, even though you use gloves. Wash your hands after removing soiled protective clothing, before leaving the laboratory, and before eating, drinking, smoking, or using a rest room. Wash your hands periodically during the day at intervals dictated by the nature of your work. Wash with soap and running water, with hands held downward to flush the contamination off the hands. Turn the tap off with a clean paper towel to prevent recontamination, and dry your hands with clean towels.

Clothing

Cover unprotected skin whenever possible. Suitable clothing shall be worn in the laboratory; shorts are not appropriate. Clothing may absorb liquid spills that would otherwise come in contact with your skin. Long sleeves protect arms and shall fit snugly, especially when you are working around machinery. Wool affords more protection from flash burns or corrosive chemicals than cotton or synthetic fabrics. Synthetic fabrics may increase the severity of injury in case of fire. Cotton is less prone to static electricity buildup than nylon or other synthetics.

Wear substantial leather shoes in the laboratory to protect against chemical splashes or broken glass. Do not wear sandals, cloth sport shoes, perforated shoes, or open-toed shoes. If you clean up a spill from the floor, you may need the added protection of rubber boots or plastic shoe covers. Steel-toed shoes are required for handling heavy items, such as gas cylinders or heavy equipment components.

Aprons, laboratory coats, gloves, and other protective clothing, preferably made of chemically inert material, shall be readily available and used. Laboratory coats are essential to protect street clothing from biological agent aerosols or chemical splashes and spills, vap, or dusts. For work involving carcinogens, disposable coats may be preferred. For work with mineral acids, acid-resistant protective wear is desirable.

When the potential for fire exists, consider wearing a laboratory coat specifically designed to be flame retardant. Several types of flame-resistant clothes are available from safety suppliers. A low-cost option is a disposable cotton coat that has been treated with a flame-resistant material. The treatment slows combustion and provides an additional level of protection from fire and heat. However, repeated washing degrades the chemical treatment and compromises fire protection.

Eye Protection

Eye protection is mandatory in laboratories because of the obvious hazards of flying objects, splashing chemicals, and corrosive vap. Eyes are very vascular and can quickly absorb many chemicals. Regulations require protective eye and face equipment where there is a reasonable probability that using them can prevent injury. Eye protection shall be required in all laboratories where chemicals are used or stored. Eye protection is not interchangeable among employees and shall be provided for each individual unless disinfected after use.

Safety glasses with clear side shields are adequate protection for general laboratory use. Goggles shall be worn when there is danger of splashing chemicals or flying particles, such as when chemicals are poured or glassware is used under elevated or reduced pressure. A face shield with goggles offers maximum protection (for example, with vacuum systems that may implode).

Corrective lenses in spectacles do not in themselves provide sufficient protection. Regulations require that persons whose vision requires corrective lenses, and who are required to wear eye protection, shall wear goggles over their eyeglasses, prescription safety glasses, or goggles with prescription lenses. These options are also recommended for persons who customarily wear contact lenses. If contact lenses are worn, they should not be handled in the laboratory and shall be worn with regularly required eye protection, such as plastic goggles.

Gloves

Gloves are worn to prevent contact with toxic or biological agents, burns from hot or extremely cold surfaces or corrosives, or cuts from sharp objects. Skin contact is a source of exposure to infectious agents and toxic chemicals, including carcinogens. Many gloves are made for specific uses. For adequate protection, select the correct glove for the hazard in question.

A leather glove provides good protection for picking up broken glass, handling objects with sharp edges, and inserting glass tubing into stoppers. However, because they absorb liquid, leather gloves do not provide protection from chemicals, nor are they adequate for handling extremely hot surfaces. Gloves designed to insulate against hot surfaces and dry ice are not suitable for handling chemicals.

Inspect gloves for punctures or tears before putting them on. To prevent contamination of your hands or work surfaces, wash rubber or plastic gloves thoroughly with water before removing them. Pull off disposable gloves inside out and dispose of them according to the contamination hazard. Always remove contaminated gloves before leaving the laboratory. Always wash your hands after removing gloves, before leaving the work area, and before eating, drinking, smoking, or applying cosmetics.

The chemical resistance of rubber or plastic gloves varies greatly according to the glove material and the chemical handled. Consult for information before selecting and using laboratory gloves.

Chemicals can eventually permeate all glove materials. Select glove materials resistant to the chemical being used, and change gloves periodically to minimize penetration. The chemical resistance of common glove materials varies according to the glove manufacturer, as manufacturers may vary the thicknesses and formulations of materials. Call the manufacturer to verify that a particular glove material is suitable for the chemical in use.

Transportation of Hazardous Materials

A personal vehicle shall not be used to transport hazardous materials. Transportation requires that a licensed hazardous materials transporter be employed if hazardous materials are transported on a public highway or by air or water. The material to be transported shall be properly packaged in accordance with all applicable regulations and appropriate shipping papers shall be provided.

Biological materials shall be shipped in compliance with all regulations. 

Visit to Laboratories

Do not allow visitors, including children and pets, in laboratories where hazardous substances are stored or are in use or hazardous activities are in progress. Students from primary and secondary schools occasionally may enter laboratories as part of educational programs under carefully controlled and supervised conditions. Colleagues, prospective students, and others may be invited into laboratories for legitimate academic and research purposes. If a visitor is request please consulte with the study adminstration before allowing entrence. 

Laboratory ventilation

Laboratories shall be provided with general ventilation adequate for employee comfort and sufficient to supply air for chemical fume hoods and other local ventilation devices. Because the general air supply is not adequate for manipulating hazardous materials on an open lab bench, volatile or toxic chemicals shall be handled in a chemical fume hood or other appropriate containment device.

Fume Hoods

A chemical fume hood is an important engineering control for preventing exposure to hazardous materials. In conjunction with sound laboratory techniques, a chemical fume hood serves as an effective means for capturing toxic, carcinogenic, offensive, or flammable vap or other airborne contaminants that would otherwise enter the general laboratory atmosphere. With the sash lowered, the chemical fume hood also forms a physical barrier to protect workers from hazards such as chemical splashes or sprays, fires, and minor explosions. Chemical fume hoods may also provide effective containment for accidental spills of chemicals, although this is not their primary purpose. The deliberate release and venting of chemicals (i.e., evaporation) in chemical fume hoods shall never be used as a means of disposal.

Safety Showers

Safety showers shall be installed in all areas where employees may be exposed to splashes or spills of materials that may be injurious to the eyes and body. As a general rule, new shower installations shall adhere to the recommendations for shower location and minimum performance requirements. Showers shall be placed as close to the hazard as possible, but in no case more than 10 seconds' travel time from the hazard. Department heads shall ensure that safety showers are installed in the department where needed.

Eyewash

An eyewash providing a continuous, low-pressure stream of aerated water shall be provided in each laboratory in which chemical or biological agents are used or stored and in laboratories where nonhuman primates are handled. The eyewash shall be easily accessible from any part of the laboratory. If possible, the eyewash should be located near the safety shower so that, if necessary, the eyes can be washed while the body is showered.

First Aid Kits

Kits should be stored in every lab and be easily accessible. The first aid kit should contain the items recommended in the First Aid Kit Policy and Guidelines for Laboratories. It shall be inspected monthly to ensure that no items are missing and that none of the remedies (e.g., saline solution, ointment) in the kit have expired. The inspections shall be documented (an inspection record is included in the policy).

Laboratory Sinks and Drain Traps

Every laboratory using chemical or biological agents shall have at least one sink, preferably located near the room exit, available for hand washing. The sink shall be cleaned regularly to eliminate contamination, and soap shall be supplied for hand washing.

Drain traps in sinks, flow, and other places will dry out if they are not used regularly, allowing contamination to back up into the room. Drain traps shall be kept filled with water to prevent backup. Also fill cup sinks on benches and in chemical fume hoods.

Electrical Equipment

Electrical currents of very low amperage and voltage may result in fatal shock under certain circumstances. Voltages as low as 24 volts AC can be dangerous and present a lethal threat. Low-voltage DC circuits do not normally present a hazard to human life, although severe burns are possible. The duration of contact with a live circuit affects the degree of damage, especially with regard to burns.

All electrical circuit breakers shall be labeled, and all laboratory personnel shall know where these controls are and how to shut off circuits or equipment in case of fire or other accident. Any electrical equipment that is not operating properly or seems to be overheating shall be turned off immediately and inspected by a qualified technician.

Electrical equipment should be inspected periodically to confirm that the cords and plugs are in safe condition. Circuit diagrams, operating instructions, descriptions of hazards, and safety devices are usually provided by the manufacturer and should be kept on file for reference.

Place electrical equipment so as to minimize the possibility that water or chemicals could spill on it or that water could condense and enter the motor or controls. In particular, place such equipment away from safety showers. In cold rooms, condensation can be minimized by mounting electrical equipment on walls or vertical panels.

If a worker receives an electrical shock and is in contact with the energized device, use nonconductive gloves or a nonconducting device to pull or push the victim free from the electrical source. Help victims only if you are certain that you will not endanger your own safety. Turn off or disconnect the power source if possible. Call 1-1-2. If a trained person is available, start CPR if necessary. Get medical assistance at once.

Static Electricity

Static electricity may be generated whenever two surfaces are in contact with one another. Examples are processes such as evaporation, agitation, pumping, pouring of liquids, or grinding of solids or powders. Equipment used in these operations shall be bonded and grounded to prevent static charges from accumulating on the containers. Blanketing with inert gas may also prevent sparks in equipment where flammable vap are present. Static electricity is increased by low absolute humidity, as is likely in cold weather. Some common potential sources of electrostatic discharges are ungrounded metal tanks and containers; metal-based clamps, nipples, or wire used with nonconducting hoses; high-pressure gas cylinders upon discharge; and clothing or containers made of plastic or synthetic materials.

Centrifuges

If a tabletop centrifuge is used, make certain that it is securely anchored in a location where its vibration will not cause bottles or equipment to fall. Ensure that the disconnect switch is working properly and shuts off the equipment when the top is opened. Centrifuge rot shall be balanced each time they are used. Securely anchor and shield each unit against flying rot. Regularly clean rot and buckets with noncorrosive cleaning solutions.

Always close the centrifuge lid during operation, and do not leave the centrifuge until full operating speed is attained and the machine appears to be running safely without vibration. Stop the centrifuge immediately and check the load balances if vibration occurs. Check swing-out buckets for clearance and support.

Vacuum Pumps

If vacuum pumps are used with volatile substances, the input line to the pump shall be fitted with a cold trap to minimize the amount of volatiles that enter the pump and dissolve in the pump oil. The exhaust from evacuation of volatile, toxic, or corrosive materials shall be vented to an air exhaust system. A scrubber or trap may also be required. If pump oil becomes contaminated with toxic chemicals, it will exhaust the chemicals into the room air during future use.

Drying Ovens and Furnaces

Volatile organics shall not be dried in ovens that vent to the room air. Glassware rinsed with organics should not be oven dried unless it is first re-rinsed with water. 

Wear heat-resistant gloves and appropriate eye protection when working at ovens or furnaces. 

Syringes and Scalpel Blades

Syringes used with hazardous agents shall have needle-locking or equivalent tips to assure that the needles cannot separate during use. Do not recap needles after use. Recapping of needles potentially contaminated with human blood, blood products, or other potentially infectious materials is prohibited.

Syringes, needles, or scalpels shall be disposed of immediately after use in sealable, puncture-resistant, disposable containers that are leak proof on the sides and bottom. The containers shall be appropriately labeled as to the chemical or biological hazard. Sharps containers shall be easily accessible to personnel in the immediate area of use.

Glassware

Borosilicate glassware, such as Pyrex 7740, is the type preferred for laboratory experimentation, except in special experiments involving ultraviolet or other light sources or hydrofluoric acid, for which polypropylene containers are most appropriate. Measuring glassware, stirring rods, tubing, and reagent bottles may be ordinary soft glass. Vacuum or suction flasks shall be designed with heavy walls. Dewar flasks and large vacuum vessels shall be taped or otherwise screened or contained in metal to prevent glass from flying if they should implode. An ordinary thin-walled thermos bottle is not an acceptable replacement for a Dewar flask.

Because it can be damaged in shipping, handling, or storage, inspect glassware carefully before using it to be sure it does not have hairline cracks or chips. Even the smallest flaw renders glassware unacceptable and possibly dangerous. Flawed glassware shall be discarded in a rigid, puncture-resistant broken-glass bin. Where the integrity of glassware is especially important, it can be examined in polarized light for strains.

Fire Extinguisher Policy

Fire extinguishers are provided by the University where required by building and life safety code.

Ultraviolet Light

Germicidal lamps using ultraviolet light are common fixtures in biological safety cabinets, where they serve to destroy bacteria and molds. These lamps are considered a high-level source of UV radiation; exposure to the lamps without adequate personal protection could result in skin or eye injury.

Acute skin effects due to direct UV exposure vary with dose. Dermal effects include three types: erythema (sunburn), increase in pigmentation (suntanning), and hyperplasia (increase in epidermal cell growth, resulting in enlargement of tissue). UV radiation may also increase the cutaneous effects of certain solvents and photosensitizing chemicals.

Appropriate protection against UV exposure includes long sleeves and laboratory gloves. For individuals particularly sensitive to UV light, suntan lotion on the exposed skin of the face is recommended. ANSI-approved shaded eye protection with side enclosures shall be worn in the vicinity of a UV light fixture not shielded by a physical barrier.

General advice

Never pour water in concentrated acids! Always do the opposite, i.e. gently pour the acid into the water.

Always turn the test tube away from yourself and fellow students, e.g. towards the backside of the fume hood - if necessary. Be alert that splashes not to causes harm to anyone.

Sealed flasks or other closed glassware should never be heated due to an explosion hazard.

Never push glass pipes through a hole in a rubber or cork plug, without having an understanding of how to do it without danger of injury.

Rubber hoses that cannot be easily pulled out must be cut off near the glass.

Vacuum equipment must be in a fume hood wherever possible, due to implosion hazard. 

Hazardous chemicals in glass bottles in quantities of 1 litre or more must be transported with great caution e.g., in a plastic bucket with a secure handle.

Flammable /explosive liquids and solids must not be used in the vicinity of open flames - when heating these materials, use an electric hotplate or heat jacket with care.

Never pour chemicals back in their stock bottlesExcess chemical is threated as waste.

Liquid that has run down the side of the utensilsis flushed with water and the utensil is wiped with paper.

Always return chemicals to their appointed storage right after use.

Containers with self-made reagents must be clearly labelled with what it contains, your name and date, and hazards pictograms. Use Kemibrug.

Glass with abrasive must be lubricated with silicon or a Teflon ring before use  Note this is very important when using bases.

Workspace is kept clean and organised, tools that is not used direcetly tied to the experiment is kept at a distants, including computers, notes and so forth.

Always hold on the label when pouring from a container, this protects the label and prolong its lifetime