

"How to prepare for lab"

Why do we prepare for lab?

- To know what to do
 - If there is a specific order to perform the experiment
 - If there is a specific technic to understand
 - If there is something to be aware of regarding safety
 - If there are anything to prepare (calculation, buffers, etc.)
 - If there are a specific thing to remember to note during the experiment
- To ensure safer and well executed experiments

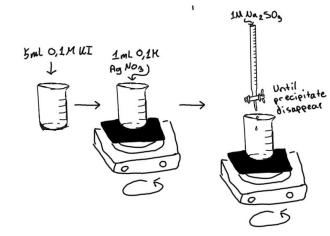


How to prepare for lab?

- Read the protocol/manual
 - Understand the purpose of the experiment, what are you aiming to prove/find?
 - Look up all the abbreviations or word you do not understand to ensure that you know them
- Make a flow diagram
 - To ensure that you understand the steps and orders and what to use
 - Helps you during the experiment to know what to do next
- Preparation prior to start the experiment
 - Prepare document to conduct the experiment
 - Prepare equations & calculations
 - How to obtain the needed concentration (how much to weight out)
 - What dilutions is needed (how to do the dilution)

Example of flow diagram - 1

General and organic chemistry: Equilibrium



A few ml uscn-sol. A few USCN A few NaHPO4 Scrystals

endo therm?

Example for scheme to document results:

Pt. 1

Test tube	Added	Observations	Equilibrium pushed
	(compound/heat)	(Colour/precipitate/exo- or endotherm)	towards
а			
b			
С			
d			
е			
f			

Pt. 2

0,100 M KI added (mL)	0,100 M AgNO₃ added (mL)	1,00M Na ₂ S ₂ O ₃ added (mL)

Example of flow diagram - 2

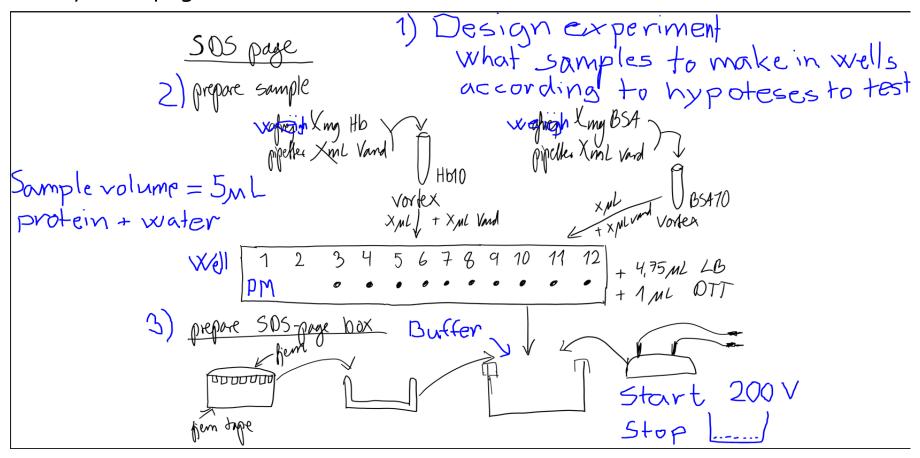
Microbiology: Growth of E. coli measured by spectrophotometer & plate count

Prepared excel scheme to document the experiment Day 1. Including calculation of In and plot with linear regression. Results form spectrophotometer:

Time [Min]	E.Coli + AMP	E.Coli
0		
30		
60		
90		
120		
150		
180		

Spectrophotometer type: _____

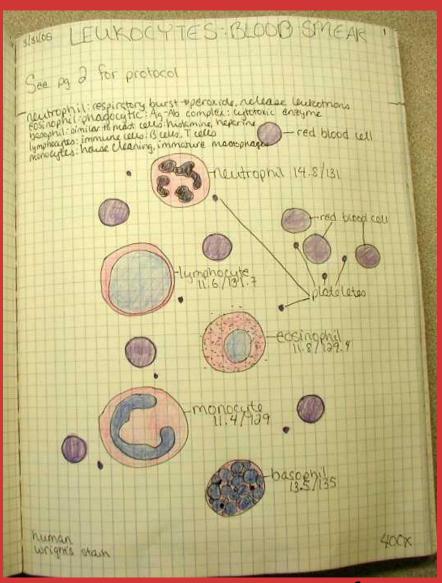
Incubator used: _____


Materials:

Look E. coli	500 pl + vo 4,5ml 45ml 4,5ml PBS PBS PBS	4,5ml 4,5m	(falcon tubes) L 4,5mL 4,5m PBS PBS	->
500M Int US medium		(LB)	(IB) (U	13)/
Red -> 600 nm (> If abs. > 0,3 add 1ml LB-medium) 500 ml LB medium + mix w. pipette tip	Ecolo		Overvie	
500 ml LB medium /		[me[min]		Spectrosco. O+
Ret [Int LB-medium] 500 medium + mix w. pipette tip		[] [2] [[me[min]	Plating @	Spectrosco. @+
Red (Int lB-medium) 500 ml LB medium + mix w. pipette tip Every 30 min		[] [2] [[me[min] 0 30	Plating @	Spectrosco. ()+ X
Ret [Int lB-medium] 500 ml LB medium + mix w. pipette tip Every 30 min		[] [2] [Sime[min] 0 30 60	Plating ②	Spectrosco. @+
Ref [Int LB-medium] 500 mt LB medium + mix w. pipette tip Every 30 min y 2)		[] [2] [[me[min] 0 30	Plating ②	Spectrosco. ⊕+ × × ×
Ref [Int LB-medium] 500 medium + mix w. pipette tip		1) (2) 15 me [min] 0 30 60 90	Plating © ×	Spectrosco. +

Example of flow diagram - 3

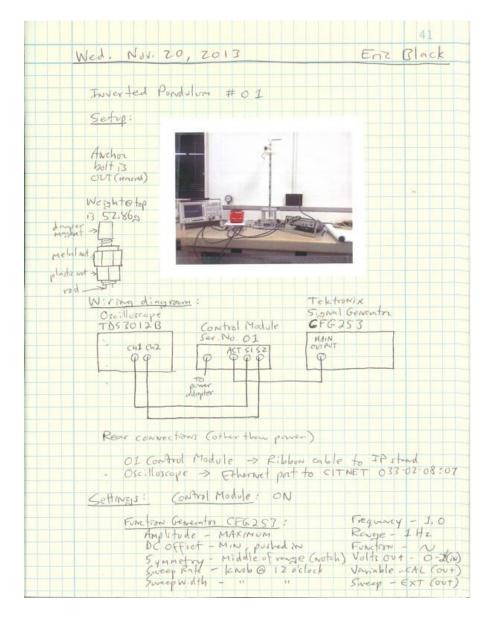
Biochemistry: SDS-page

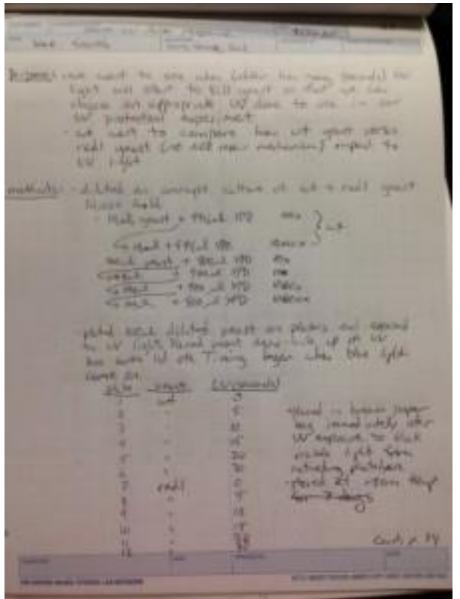


"How to labbook"


"How to avoid meaningless lab-work"

Kresten Jon Korup Kromphardt


Kim Blanksø Pedersen



What is a Lab Book?

Why do we keep lab notes?

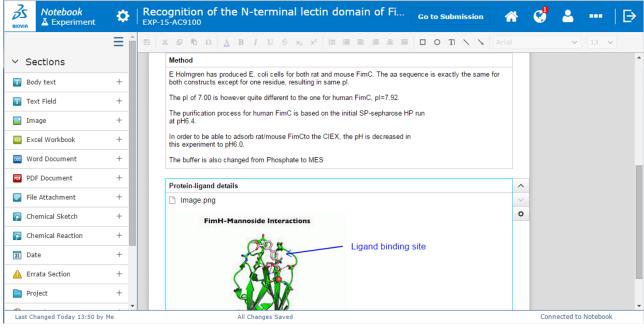
■ To document that we have actually done what we have done → patents / documentation for staying within standards (GxP)

- To remember what we have done
 - Troubleshooting is impossible without notes!

So that others can repeat what we have done

■ To be able to write a report in the end!!

What to write?



- Date + operator(s)
- Overall tasks which have been/should be completed
- Keeping track of samples taken + storage of samples → Names of samples must be documented in lab books
 - Arbitrary numbers could be given to samples
- When documenting media formulation → write what you did not what the recipe said you should do!
- Write down mistakes → do not delete typos or remove pages
- What is the name of a <u>datafile</u> generated
 - Where is the datafile stored
- Safety →gloves, fume hood, goggles etc.
- Any special/hazardous waste

Electronic Lab Notebooks (ELN's)

ELN vs. pen and paper

 ELN's are used extensively in regulated environments (pharma, biotech industry, clinical diagnostics etc.)

■ Print instructions which you will be using multiple times → i.e., Lab manual

Find the right ELN for you: https://www.nature.com/articles/d41586-o18-o5895-3

"How to do lab reports"

Why do we do lab reports?

■ To document what we did and conclude on results and follow the IMR&D structure (introduction, methodology, results, discussion, and conclusion) with some additional elements.

- Report concept:
- https://docs.google.com/document/d/1FcAzA_sWch_glo_IDAGArtTV5lxLFsqV/e dit?amp;ouid=109174344958533626724&rtpof=true&sd=true

Why do we do lab report review?

To ensure professional output but avoid obvious mistakes

Input to Check list for review:

- Do it fit to the standard (sections, length, title data)
- Figures, tables and pictures
 - Consecutively numbering
 - Standalone explanation text
 - Reference in text to all
- References when stating facts
 - Check that all references are used in text
 - All references must be relevant, remember to refer to protocol
- Did we include what was required?
- Is there a conclusion on the results and perspectivation to literature if relevant?
- Is all theory relevant for this report?
- No new information in Discussion or Conclusion section
 - Relevant facts must be introduced in the Introduction section